Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0157423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236018

RESUMO

ATP-dependent energy-consuming enzymatic reactions are widely used in cell-free biocatalysis. However, the direct addition of large amounts of expensive ATP can greatly increase cost, and enzymatic production is often difficult to achieve as a result. Although a polyphosphate kinase (PPK)-polyphosphate-based ATP regeneration system has the potential to solve this challenge, the generally poor thermal stability of PPKs limits the widespread use of this method. In this paper, we evaluated the thermal stability of a PPK from Sulfurovum lithotrophicum (SlPPK2). After directed evolution and computation-supported design, we found that SlPPK2 is very recalcitrant and cannot acquire beneficial mutations. Inspired by the usually outstanding stability of ancestral enzymes, we reconstructed the ancestral sequence of the PPK family and used it as a guide to construct three heat-stable variants of SlPPK2, of which the L35F/T144S variant has a half-life of more than 14 h at 60°C. Molecular dynamics simulations were performed on all enzymes to analyze the reasons for the increased thermal stability. The results showed that mutations at these two positions act synergistically from the interior and surface of the protein, leading to a more compact structure. Finally, the robustness of the L35F/T144S variant was verified in the synthesis of nucleotides at high temperature. In practice, the use of this high-temperature ATP regeneration system can effectively avoid byproduct accumulation. Our work extends the temperature boundary of ATP regeneration and has great potential for industrial applications.IMPORTANCEATP regeneration is an important basic applied study in the field of cell-free biocatalysis. Polyphosphate kinase (PPK) is an enzyme tool widely used for energy regeneration during enzymatic reactions. However, the thermal stability of the PPKs reported to date that can efficiently regenerate ATP is usually poor, which greatly limits their application. In this study, the thermal stability of a difficult-to-engineer PPK from Sulfurovum lithotrophicum was improved, guided by an ancestral sequence reconstruction strategy. The optimal variant has a 4.5-fold longer half-life at 60°C than the wild-type enzyme, thus enabling the extension of the temperature boundary for ATP regeneration. The ability of this variant to regenerate ATP was well demonstrated during high-temperature enzymatic production of nucleotides.


Assuntos
Trifosfato de Adenosina , Epsilonproteobacteria , Fosfotransferases (Aceptor do Grupo Fosfato) , Trifosfato de Adenosina/metabolismo , Temperatura , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Nucleotídeos
2.
Microbiome ; 11(1): 270, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049915

RESUMO

BACKGROUND: Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS: We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS: Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Ecossistema , Temperatura , Prótons , Carbono/metabolismo , DNA , Fontes Hidrotermais/microbiologia , Filogenia
3.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921642

RESUMO

A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0-4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria, with Hydrogenimonas thermophila EP1-55-1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas, Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales (Nitratiruptor and Nitrosophilus) and Nautiliales (Caminibacter, Nautilia and Lebetimonas), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta-AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas. Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.


Assuntos
DNA Bacteriano , Epsilonproteobacteria , Tiossulfatos/metabolismo , Água do Mar/microbiologia , Filogenia , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Campylobacterales/metabolismo , Oxirredução , Enxofre/metabolismo
4.
mBio ; 14(4): e0011723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409803

RESUMO

Chemoautotrophs within Campylobacterota, especially Sulfurovum and Sulfurimonas, are abundant in the seawater-sediment interface of the Formosa cold seep in the South China Sea. However, the in situ activity and function of Campylobacterota are unknown. In this study, the geochemical role of Campylobacterota in the Formosa cold seep was investigated with multiple means. Two members of Sulfurovum and Sulfurimonas were isolated for the first time from deep-sea cold seep. These isolates are new chemoautotrophic species that can use molecular hydrogen as an energy source and CO2 as a sole carbon source. Comparative genomics identified an important hydrogen-oxidizing cluster in Sulfurovum and Sulfurimonas. Metatranscriptomic analysis detected high expression of hydrogen-oxidizing gene in the RS, suggesting that H2 was likely an energy source in the cold seep. Genomic analysis indicated that the Sulfurovum and Sulfurimonas isolates possess a truncated sulfur-oxidizing system, and metatranscriptomic analysis revealed that Sulfurovum and Sulfurimonas with this genotype were active in the surface of RS and likely contributed to thiosulfate production. Furthermore, geochemical and in situ analyses revealed sharply decreased nitrate concentration in the sediment-water interface due to microbial consumption. Consistently, the denitrification genes of Sulfurimonas and Sulfurovum were highly expressed, suggesting an important contribution of these bacteria to nitrogen cycling. Overall, this study demonstrated that Campylobacterota played a significant role in the cycling of nitrogen and sulfur in a deep-sea cold seep. IMPORTANCE Chemoautotrophs within Campylobacterota, in particular Sulfurovum and Sulfurimonas, are ubiquitous in deep-sea cold seeps and hydrothermal vents. However, to date, no Sulfurovum or Sulfurimonas has been isolated from cold seeps, and the ecological roles of these bacteria in cold seeps remain to be investigated. In this study, we obtained two isolates of Sulfurovum and Sulfurimonas from Formosa cold seep, South China Sea. Comparative genomics, metatranscriptomics, geochemical analysis, and in situ experimental study indicated collectively that Campylobacterota played a significant part in nitrogen and sulfur cycling in cold seep and was the cause of thiosulfate accumulation and sharp reduction of nitrate level in the sediment-water interface. The findings of this study promoted our understanding of the in situ function and ecological role of deep-sea Campylobacterota.


Assuntos
Epsilonproteobacteria , Água , Tiossulfatos/metabolismo , Nitratos/metabolismo , Nitrogênio , Água do Mar/microbiologia , Enxofre/metabolismo , Epsilonproteobacteria/genética , Hidrogênio/metabolismo , RNA Ribossômico 16S/genética , Filogenia
5.
ISME J ; 17(3): 340-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528730

RESUMO

Thiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave's surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We assembled a closed genome of the Movile strain and confirmed its metabolism using RNAseq. We compared the genome of this strain and one we assembled from public data from the sulfidic Frasassi caves to four marine genomes, including Candidatus Thiovulum karukerense and Ca. T. imperiosus, whose genomes we sequenced. Despite great spatial and temporal separation, the genomes of the Movile and Frasassi Thiovulum were highly similar, differing greatly from the very diverse marine strains. We concluded that cave Thiovulum represent a new species, named here Candidatus Thiovulum stygium. Based on their genomes, cave Thiovulum can switch between aerobic and anaerobic sulfide oxidation using O2 and NO3- as electron acceptors, the latter likely via dissimilatory nitrate reduction to ammonia. Thus, Thiovulum is likely important to both S and N cycles in sulfidic caves. Electron microscopy analysis suggests that at least some of the short peritrichous structures typical of Thiovulum are type IV pili, for which genes were found in all strains. These pili may play a role in veil formation, by connecting adjacent cells, and in the motility of these exceptionally fast swimmers.


Assuntos
Cavernas , Epsilonproteobacteria , Cavernas/química , Enxofre/metabolismo , Epsilonproteobacteria/metabolismo , Romênia , Filogenia
6.
Sci Rep ; 12(1): 20723, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456707

RESUMO

Iron (Fe) is an essential trace element for life. In the ocean, Fe can be exceptionally scarce and thus biolimiting or extremely enriched causing microbial stress. The ability of hydrothermal plume microbes to counteract unfavorable Fe-concentrations up to 10 mM is investigated through experiments. While Campylobacterota (Sulfurimonas) are prominent in a diverse community at low to intermediate Fe-concentrations, the highest 10 mM Fe-level is phylogenetically less diverse and dominated by the SUP05 clade (Gammaproteobacteria), a species known to be genetically well equipped to strive in high-Fe environments. In all incubations, Fe-binding ligands were produced in excess of the corresponding Fe-concentration level, possibly facilitating biological Fe-uptake in low-Fe incubations and detoxification in high-Fe incubations. The diversity of Fe-containing formulae among dissolved organics (SPE-DOM) decreased with increasing Fe-concentration, which may reflect toxic conditions of the high-Fe treatments. A DOM-derived degradation index (IDEG) points to a degradation magnitude (microbial activity) that decreases with Fe and/or selective Fe-DOM coagulation. Our results show that some hydrothermal microbes (especially Gammaproteobacteria) have the capacity to thrive even at unfavorably high Fe-concentrations. These ligand-producing microbes could hence play a key role in keeping Fe in solution, particularly in environments, where Fe precipitation dominates and toxic conditions prevail.


Assuntos
Epsilonproteobacteria , Gammaproteobacteria , Microbiota , Transporte Biológico , Coagulação Sanguínea
7.
Environ Microbiol ; 24(12): 6144-6163, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36284406

RESUMO

In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Cádmio , Cobre , Proteômica , Metais
8.
Microbiome ; 10(1): 170, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242065

RESUMO

BACKGROUND: Geothermal systems have contributed greatly to both our understanding of the functions of extreme life and the evolutionary history of life itself. Shallow-sea hydrothermal systems are ecological intermediates of deep-sea systems and terrestrial springs, harboring unique and complexed ecosystems, which are well-lit and present physicochemical gradients. The microbial communities of deep-sea and terrestrial geothermal systems have been well-studied at the population genome level, yet little is known about the communities inhabiting the shallow-sea hydrothermal systems and how they compare to those inhabiting other geothermal systems. RESULTS: Here, we used genome-resolved metagenomic and metaproteomic approaches to probe into the genetic potential and protein expression of microorganisms from the shallow-sea vent fluids off Kueishantao Island. The families Nautiliaceae and Campylobacteraceae within the Epsilonbacteraeota and the Thiomicrospiraceae within the Gammaproteobacteria were prevalent in vent fluids over a 3-year sampling period. We successfully reconstructed the in situ metabolic modules of the predominant populations within the Epsilonbacteraeota and Gammaproteobacteria by mapping the metaproteomic data back to metagenome-assembled genomes. Those active bacteria could use the reductive tricarboxylic acid cycle or Calvin-Benson-Bassham cycle for autotrophic carbon fixation, with the ability to use reduced sulfur species, hydrogen or formate as electron donors, and oxygen as a terminal electron acceptor via cytochrome bd oxidase or cytochrome bb3 oxidase. Comparative metagenomic and genomic analyses revealed dramatic differences between submarine and terrestrial geothermal systems, including microbial functional potentials for carbon fixation and energy conversion. Furthermore, shallow-sea hydrothermal systems shared many of the major microbial genera that were first isolated from deep-sea and terrestrial geothermal systems, while deep-sea and terrestrial geothermal systems shared few genera. CONCLUSIONS: The metabolic machinery of the active populations within Epsilonbacteraeota and Gammaproteobacteria at shallow-sea vents can mirror those living at deep-sea vents. With respect to specific taxa and metabolic potentials, the microbial realm in the shallow-sea hydrothermal system presented ecological linkage to both deep-sea and terrestrial geothermal systems. Video Abstract.


Assuntos
Epsilonproteobacteria , Gammaproteobacteria , Fontes Hidrotermais , Microbiota , Citocromos/genética , Citocromos/metabolismo , Epsilonproteobacteria/genética , Formiatos/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Humanos , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia , Oxirredutases , Oxigênio/metabolismo , Filogenia , Enxofre/metabolismo
9.
Environ Microbiol ; 24(12): 6164-6183, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271901

RESUMO

Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , Epsilonproteobacteria/genética
10.
Bioresour Technol ; 346: 126669, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34995779

RESUMO

Sulfur-based autotrophic denitrification (SAD) and pyrite-based autotrophic denitrification (PAD) are important technologies that address nitrate pollution, but high sulfate production and low denitrification efficiency, respectively, limit their application in engineering. A bio-denitrification reactor with sulfur and pyrite as filler materials was studied to remove NO3--N from nitrate contaminated water. At an influent NO3--N concentration of 50 mg/L, NO3--N removal efficiency of the sulfur/pyrite-based bioreactor was 99.2%, producing less NH4+-N and SO42- than the sulfur-based bioreactor, even after long-term operation. Denitrification performance was significantly related to environmental variable, especially dissolved oxygen. Proteobacteria and Epsilonbacteraeota were the predominant phyla in the sulfur/pyrite-based bioreactor, and fewer dissimilatory nitrate reductions to ammonia process-related bacteria were enriched compared to those in the sulfur-based bioreactor. Sulfur-pyrite bio-denitrification provides an efficient alternative method for treatment of nitrate contaminated water.


Assuntos
Compostos de Amônio , Epsilonproteobacteria , Processos Autotróficos , Reatores Biológicos , Desnitrificação , Ferro , Nitratos , Sulfatos , Sulfetos , Enxofre , Água
11.
Mol Microbiol ; 117(1): 215-233, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818434

RESUMO

Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators that control bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologs can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologs in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR (untranslated region) of an upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Epsilonproteobacteria/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Pequeno RNA não Traduzido/genética , Regiões 3' não Traduzidas/genética , Campylobacter jejuni/patogenicidade , Epsilonproteobacteria/patogenicidade , Flagelos/genética , Helicobacter pylori/patogenicidade , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Ribonuclease III/genética , Virulência
12.
Nucleic Acids Res ; 49(9): 5249-5264, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33893809

RESUMO

Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exorribonucleases/metabolismo , Helicobacter pylori/enzimologia , Motivos de Aminoácidos , Epsilonproteobacteria/enzimologia , Exorribonucleases/química , RNA de Cadeia Dupla/metabolismo , RNA Ribossômico 5S/metabolismo
13.
Syst Appl Microbiol ; 44(1): 126170, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33340909

RESUMO

A novel thermophilic bacterium, strain SSM-sur55T, was isolated from a chimney structure at the Urashima site on the Southern Mariana Trough in the Pacific Ocean. Growth was observed at temperatures between 25 and 60°C (optimum, 55°C; 180min doubling time), at pH values between 5.3 and 7.2 (optimum, pH 5.9) and in the presence of between 1.6 and 5.6% (w/v) NaCl (optimum, 3.2%). The isolate used molecular hydrogen as its sole energy source, carbon dioxide as its sole carbon source, ammonium as its sole nitrogen source, and elemental sulfur as its sole sulfur source. Thiosulfate, molecular oxygen (0.1%, v/v) or elemental sulfur was utilized as its sole electron acceptor. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SSM-sur55T belonged to the genus Hydrogenimonas of the class "Campylobacteria", and its closest relative was Hydrogenimonas thermophila EP1-55-1%T (94.9%). On the basis of the phylogenetic, physiological and molecular characteristics, strain SSM-sur55T represents a novel species within the genus Hydrogenimonas, for which the name Hydrogenimonas urashimensis sp. nov. is proposed, with the type strain SSM-sur55T (JCM 19825=KCTC 15926).


Assuntos
Epsilonproteobacteria/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Compostos de Amônio , Dióxido de Carbono , Epsilonproteobacteria/isolamento & purificação , Hidrogênio , Oceano Pacífico , RNA Ribossômico 16S/genética , Enxofre
14.
PLoS One ; 15(12): e0241366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301463

RESUMO

A novel bacterium, strain EPR55-1T, was isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The cells were motile rods. Growth was observed at temperatures between 50 and 60°C (optimum, 60°C), at pH values between 5.4 and 8.6 (optimum, pH 6.6) and in the presence of 2.4-3.2% (w/v) NaCl (optimum, 2.4%). The isolate used molecular hydrogen as its sole electron donor, carbon dioxide as its sole carbon source, ammonium as its sole nitrogen source, and thiosulfate, sulfite (0.01 to 0.001%, w/v) or elemental sulfur as its sole sulfur source. Nitrate, nitrous oxide (33%, v/v), thiosulfate, molecular oxygen (0.1%, v/v) or elemental sulfur could serve as the sole electron acceptor to support growth. Phylogenetic analyses based on both 16S rRNA gene sequences and whole genome sequences indicated that strain EPR55-1T belonged to the family Nitratiruptoraceae of the class "Campylobacteria", but it had the distinct phylogenetic relationship with the genus Nitratiruptor. On the basis of the physiological and molecular characteristics of the isolate, the name Nitrosophilus alvini gen. nov. sp. nov. is proposed, with EPR55-1T as the type strain (= JCM 32893T = KCTC 15925T). In addition, it is shown that "Nitratiruptor labii" should be transferred to the genus Nitrtosophilus; the name Nitrosophilus labii comb. nov. (JCM 34002T = DSM 111345T) is proposed for this organism. Furthermore, 16S rRNA gene-based and genome-based analyses showed that Cetia pacifica is phylogenetically associated with Caminibacter species. We therefore propose the reclassification of Cetia pacifica as Caminibacter pacificus comb. nov. (DSM 27783T = JCM 19563T). Additionally, AAI thresholds for genus classification and the reclassification of subordinate taxa within "Campylobacteria" are also evaluated, based on the analyses using publicly available genomes of all the campylobacterial species.


Assuntos
Epsilonproteobacteria/classificação , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Genoma Bacteriano , Hidrogênio/metabolismo , Oxirredução , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie , Terminologia como Assunto
15.
PLoS One ; 15(11): e0241784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206681

RESUMO

In recent years, methylene blue (MB) has attracted considerable interest as a potential drug for the treatment of methemoglobinemia and neurodegenerative diseases. MB is active against microorganisms from various taxonomic groups. However, no studies have yet been conducted on the effect of MB on the intestinal microbiome of model animals. The aim of this work was to study the effect of different concentrations of MB on the mouse gut microbiome and its relationship with the cognitive abilities of mice. We showed that a low MB concentration (15 mg/kg/day) did not cause significant changes in the microbiome composition. The Bacteroidetes/Firmicutes ratio decreased relative to the control on the 2nd and 3rd weeks. A slight decrease in the levels Actinobacteria was detected on the 3rd week of the experiment. Changes in the content of Delta, Gamma, and Epsilonproteobacteria have been also observed. We did not find significant alterations in the composition of intestinal microbiome, which could be an indication of the development of dysbiosis or other gut dysfunction. At the same time, a high concentration of MB (50 mg/kg/day) led to pronounced changes, primarily an increase in the levels of Delta, Gamma and Epsilonproteobacteria. Over 4 weeks of therapy, the treatment with high MB concentration has led to an increase in the median content of Proteobacteria to 7.49% vs. 1.61% in the control group. Finally, we found that MB at a concentration of 15 mg/kg/day improved the cognitive abilities of mice, while negative correlation between the content of Deferribacteres and cognitive parameters was revealed. Our data expand the understanding of the relationship between MB, cognitive abilities, and gut microbiome in respect to the antibacterial properties of MB.


Assuntos
Azul de Metileno/farmacologia , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Proteobactérias/genética , Proteobactérias/metabolismo
16.
Pediatr Infect Dis J ; 39(12): 1081-1087, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32947600

RESUMO

BACKGROUND: The prevalence of extended-spectrum beta-lactamase producing Εnterobacteriaceae (ESBL-PE) is increasing globally. ESBL-PE are an important cause of urinary tract infections (UTIs) in children. We aimed to characterize the clinical presentation, treatment and outcomes of childhood UTI caused by ESBL-PE in Europe. METHODS: Multicenter retrospective cohort study. Children 0 to 18 years of age with fever, positive urinalysis and positive urine culture for an ESBL-PE uropathogen, seen in a participating hospital from January 2016 to July 2017, were included. MAIN OUTCOME MEASURES: Primary outcome measure: day of defervescence was compared between (1) initial microbiologically effective treatment (IET) versus initial microbiologically ineffective treatment (IIT) and (2) single initial antibiotic treatment versus combined initial antibiotic treatment. SECONDARY OUTCOME MEASURES: Clinical and microbiologic failure of initial treatment. RESULTS: We included 142 children from 14 hospitals in 8 countries. Sixty-one children had IET and 77 IIT. There was no statistical difference in time to defervescence for effective/ineffective groups (P = 0.722) and single/combination therapy groups (P = 0.574). Two of 59 (3.4%) and 4/66 (6.1%) patients exhibited clinical failure during treatment (P = 0.683) when receiving IET or IIT, respectively. Eight of 51 (15.7%) receiving IET and 6/58 (10.3%) receiving IIT patients (P = 0.568) had recurring symptoms/signs suggestive of a UTI. Recurrence of a UTI occurred 15.5 days (interquartile range, 9.0-19.0) after the end of treatment. CONCLUSIONS: Time to defervescence and clinical failure did not differ between IET/IIT groups. Non-carbapenem beta-lactam antibiotics may be used for the empiric treatment of ESBL febrile UTIs, until susceptibility testing results become available.


Assuntos
Infecções Bacterianas , Epsilonproteobacteria , Infecções Urinárias , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Epsilonproteobacteria/efeitos dos fármacos , Epsilonproteobacteria/enzimologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pielonefrite , Estudos Retrospectivos , Resultado do Tratamento , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , beta-Lactamases/metabolismo
17.
Syst Appl Microbiol ; 43(5): 126108, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847783

RESUMO

The proposal to restructure the genus Arcobacter into six distinct genera was critically examined using: comparative analyses of up to 80 Epsilonproteobacterial genome sequences (including 26 arcobacters); phylogenetic analyses of three housekeeping genes and also 342 core genes; and phenotypic criteria. Genome sequences were analysed with tools to calculate Percentage of Conserved Proteins, Average Amino-acid Identity, BLAST-based Average Nucleotide Identity, in silico DNA-DNA hybridisation values, genome-wide Average Nucleotide Identity, Alignment Fractions and G+C percentages. Genome analyses revealed the genus Arcobacter sensu lato to be relatively homogenous, and phylogenetic analyses clearly distinguished the group from other Epsilonproteobacteria. Genomic distinction of the genera proposed by Pérez-Cataluña et al. [2018] was not supported by any of the measures used and a subsequent risk of strain misidentification clearly identified. Similarly, phenotypic analyses supported the delineation of Arcobacter sensu lato but did not justify the position of the proposed novel genera. The present polyphasic taxonomic study strongly supports the continuance of the classification of "aerotolerant campylobacters" as Arcobacter and refutes the proposed genus-level subdivision of Pérez-Cataluña et al. [2018].


Assuntos
Arcobacter/classificação , Epsilonproteobacteria/classificação , Arcobacter/genética , Arcobacter/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , DNA Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/crescimento & desenvolvimento , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Genômica , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Proteoma , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
N Biotechnol ; 57: 67-75, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32360635

RESUMO

Anoxic biotrickling filters (BTFs) represent a technology with high H2S elimination capacity and removal efficiencies widely studied for biogas desulfurization. Three changes in the final electron acceptors were made using nitrate and nitrite during an operating period of 520 days. The stability and performance of the anoxic BTF were maintained when a significant perturbation was applied to the system that involved the progressive change of nitrate to nitrite and vice versa. Here the impact of electron acceptor changes on the microbial community was characterized by denaturing gel gradient electrophoresis (DGGE) and next generation sequencing (NGS). Both platforms revealed that the community underwent changes during the perturbations but was resilient because the removal capacity did not significantly change. Proteobacteria and Bacteroidetes were the main Phyla and Sulfurimonas and Thiobacillus the main nitrate-reducing sulfide-oxidizing bacteria (NR-SOB) genera involved in the biodesulfurization process.


Assuntos
Eletroforese em Gel de Gradiente Desnaturante , Elétrons , Filtração , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Nitritos/química , Epsilonproteobacteria/química , Microbiota , Thiobacillus/química
19.
Nucleic Acids Res ; 48(6): 3343-3355, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016421

RESUMO

NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.


Assuntos
Bacteriófagos/enzimologia , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Ecossistema , Epsilonproteobacteria/genética , Epsilonproteobacteria/virologia , Fontes Hidrotermais/química
20.
ISME J ; 14(1): 104-122, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562384

RESUMO

Most autotrophs use the Calvin-Benson-Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts ("Candidatus Thiobarba") of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that "Ca. Thiobarba" switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated "Ca. Thiobarba". Direct stable isotope fingerprinting showed that "Ca. Thiobarba" has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.


Assuntos
Epsilonproteobacteria/metabolismo , Fotossíntese , Animais , Bivalves/microbiologia , Ciclo do Carbono , Ciclo do Ácido Cítrico , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Gammaproteobacteria/genética , Filogenia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...